Mansoura University		
Faculty of Engineering	Computer	
Prod. \& Mechanical Design Deptartment	Applications	
For First Year Prod Dept. Students		Full Mark (60)

Answer all the following questions using the format of Matlab Programming:

Question1: (20 Marks)

For $A=\left[\begin{array}{lllllll}1 & 2 & 4 ;-3 & -1 & 4 ; 1 & 5 & 8\end{array}\right], \quad B=\left[\begin{array}{lllllll}4 & 6 & 1 ; 2 & -1 & 3 ; 4 & -6 & 9\end{array}\right]$ and $\quad Q=\left[\begin{array}{lllllll}-1 & 2 & 3 & -6 & 8 & 7 & 2\end{array}\right]$ Find:

- $\mathbf{A}(\mathbf{2}, 1)$
- $\mathrm{D}=\mathrm{B}-\mathrm{A}$
- $\mathbf{H}=\mathbf{A} * \mathbf{B}$
- A(3,:)
- $\mathbf{E}=\mathbf{A}-\mathbf{B}$
- $\mathbf{J}=\mathbf{B}^{*} \mathbf{A}$
- $\mathrm{X}=\mathrm{A}^{\prime}$
- $\mathrm{F}=\mathrm{A} . * \mathrm{~B}$
- $K=\operatorname{diag}(A)$
- $\mathbf{Y}=\mathbf{Q}(1: 4)$
- $\mathbf{G}=\mathbf{B} .{ }^{*} \mathbf{A} \quad \mathrm{~L}=\operatorname{sum}(\mathrm{B})$
- $\mathbf{Z}=\mathbf{Q}(3$:end)
- $\mathbf{P}=$ mean(Q)
- $\mathbf{M}=\max (\mathrm{A}, \mathrm{B})$
- $\mathrm{R}=\mathrm{Q}(2: 5)$
- $\mathbf{W}=m e a n\left(A^{\prime}\right)$
- $\mathbf{N}=\min (\mathbf{A}, \mathbf{B})$
- $\mathrm{C}=\mathrm{A}+\mathrm{B}$
- U=size(A)
- $\mathbf{T}=\max (\mathrm{Q})$
$-\mathbf{S}=\left[\begin{array}{lll}\mathbf{A} . * \mathbf{B} & \operatorname{zeros}(3) ; \mathbf{B} & \mathbf{A} * \mathbf{B}\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{lll}\mathbf{A} & \text { ones(3); eye(3) A-B}\end{array}\right]$

Question 2: (10 Marks)

Design Matlab programs to draw the following figures:

Figure No. 1

Figure No. 2

久uestion3: (15 Marks)

What are the outputs of the following 3 Matlab Programs:
a) for $i=1: 3$
for $\mathrm{j}=1: 3$

$$
z(i, j)=i+j
$$

end
end

$$
\begin{aligned}
& a=\min (z)+\max (z) \\
& b=\operatorname{mean}(z) * \operatorname{abs}(z) \\
& c=\operatorname{sum}(z) * \operatorname{diag}\left(z^{\prime}\right)
\end{aligned}
$$

b) syms x
$z=\operatorname{int}\left(x^{*}-3 * x^{\wedge} 3-2\right)$
$r=\operatorname{int}(z)$
$q=\operatorname{diff}\left(x^{*}-3 * x^{\wedge} 3+5^{*} x^{*}-6^{*} x^{\wedge} 4\right)$
c) $\quad \mathbf{a}=\left[\begin{array}{lll}-1 & 3 ; 2 & -4\end{array}\right]$;
$b=\left[\begin{array}{lll}a & \operatorname{eye}(2) ; \quad z e r o s(2) \quad a-a^{\prime}\end{array}\right]$
$c=\left[\begin{array}{llll}\operatorname{ones}(2) & a . * & a^{\prime} ; & a^{\prime} \\ a^{*} & a^{\prime}\end{array}\right]$

Question4: (5 Marks)

The scores received by 100 students on the midterm exam and the number of students that obtained each score are:

Score	100	90	80	70	60	50	40
No. of Student	5	10	15	25	30	10	5

Using a Matlab program, generate a histogram of these data, and find the average score.

Question5: (10 Marks)

The effect of damping factor on the magnification factor for different frequency ratios is shown in figure (3), and can be given by the following equation:
$\frac{x}{x_{0}}=\frac{1}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]+\left(2 \xi \frac{\omega}{\omega_{n}}\right)^{2}}}$
where;
$\frac{x}{x_{0}} \quad$ Magnification Factor
$\frac{\omega}{\omega_{n}} \quad$ Frequency Ratio (from 0 to 3)
ξ Damping Factor (from . 1 to .5)
Write a Matlab Program that can construct figure
(3) with all its details.

Figure (3)

