Mansoura University		First Semester		
Faculty of Engineering	Computer	Date: 31-1-2010		
Prod. & Mechanical Design Deptartment	Applications	Time: Three Hours		
For First Year Prod Dept. Students	rippiications	Full Mark (60)		

Answer all the following questions using the format of Matlab Programming:

Question1: (20 Marks)

For $A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & -1 & 4 \\ 1 & 5 & 8 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 6 & 1 \\ 2 & -1 & 3 \\ 4 & -6 & 9 \end{bmatrix}$ $Q = \begin{bmatrix} -1 & 2 & 3 & -6 & 8 & 7 & 2 \end{bmatrix}$ and

- A(2,1)
- A(3,:)
- X=A'
- Y = Q(1:4)
- Z=Q(3:end)
- R=Q(2:5)
- C=A+B

- D=B-A
- E=A-B
- F=A.*B
- G=B.*A
- P=mean(Q)
- W=mean(A')
- U=size(A)

- ♦ H=A*B
- J=B*A
- ♦ K=diag(A)
- $\leftarrow L=sum(B)$
- ϕ M=max(A,B)
- \wedge N=min(A,B)
- \bullet T=max(Q)
- \bullet V = [A ones(3); eye(3) A-B]

Question 2: (10 Marks)

Design Matlab programs to draw the following figures:

S = [A.*B zeros(3); B A*B]

Juestion3: (15 Marks)

What are the outputs of the following 3 Matlab Programs:

a) for i=1:3 for j=1:3 z(i,j)=i+j end end a = min(z) + max(z)

b) syms x $z = int(x^{2}-3^{2}x^{3}-2)$ r = int(z) $q = diff(x^{2}-3^{2}x^{3}+5^{2}x^{6}x^{4})$

end a = min(z) + max(z) b = mean(z) * abs(z) c = sum(z) * diag(z')

c) a=[-1 3; 2 -4]; b=[a eye(2); zeros(2) a-a'] c=[ones(2) a.* a'; a' a* a']

Question4: (5 Marks)

The scores received by 100 students on the midterm exam and the number of students that obtained each score are:

Score	100	90	80	70	60	50	40
No. of Student	5	10	15	25	30	10	5

Using a Matlab program, generate a histogram of these data, and find the average score.

Question5: (10 Marks)

The effect of damping factor on the magnification factor for different frequency ratios is shown in figure (3), and can be given by the following equation:

$$\frac{x}{x_0} = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + \left(2\xi \frac{\omega}{\omega_n}\right)^2}}$$
 where;

 $\frac{x}{x_0}$ Magnification Factor

 $\frac{\omega}{\omega_n}$ Frequency Ratio (from 0 to 3)

 ξ Damping Factor (from .1 to .5)

Write a Matlab Program that can construct figure (3) with all its details.

Figure (3)

31 1 2010

Good Luck,

Dr. Ahmed Galal